Skip to content

Journal Publications

*Corresponding Author;#Co-First Author

  1. Wang, J., Kudagama, B. J., Perera, U. S., Li, S.*, & Zhang, X..* (2025). Framework for generating high-resolution Hong Kong local climate projections to support building energy simulations. Physics of Fluids, 37(3), 037126. https://doi.org/10.1063/5.0254669
  2. Liang, J., Hang, J., Jia, S., Hua, J., Zhao, B., Zhang, X.*, Ling, H., & Mo, Z. (2025). O3–NOx–VOCs photochemical pollutant dispersion in 2D street canyon under effects of solar radiation. Atmospheric Environment, 121032. https://doi.org/10.1016/j.atmosenv.2025.121032
  3. Weerasuriya, A. U., Longo, R., Zhang, X.*, Cotteleer, L., & Parente, A. (2025). Comprehensive evaluation of constant and variable turbulent Schmidt numbers for CFD simulation of near-field air pollutant dispersion. Building and Environment, 270, 112493. https://doi.org/10.1016/j.buildenv.2024.112493
  4. Guo, Y., Zhang, X*., Weerasuriya, A. U., Li, C. Y., & Zhang, B. (2024). Establishing Correlation between Flow Structures and Air Pollutant Dispersion around Isolated Building. Building and Environment, 112466. https://doi.org/10.1016/j.buildenv.2024.112466
  5. Zhang, B., Wen, L., Zhang, X., Fu, Y., Tim, K. T., & Mak, C. M. (2024). Enhanced modeling of vehicle-induced turbulence and pollutant dispersion in urban street canyon: Large-eddy simulation via dynamic overset mesh approach. Sustainable Cities and Society, 105939.https://doi.org/10.1016/j.scs.2024.105939
  6. Perera, U. S., Weerasuriya, A. U., Zhang, X.*, Ruparathna, R., Tharaka, M. G. I., & Lewangamage, C. S. (2025). Selecting suitable passive design strategies for residential high-rise buildings in tropical climates to minimize building energy demand. Building and Environment, 267, 112177. https://doi.org/10.1016/j.buildenv.2024.112177
  7. Li, C. Y., Zhang, L., Li, S., Zhang, X.*, Chen, Z., Fu, Y., Lin, X., Peng, D. Z., Wang, Y., Zhang, B., Zhou, L., Wang, Y., Liu, H., Weerasuriya, A. U., Tse, K. T., & Yang, Q. (2024). Koopman-inspired data-driven quantification of fluid–structure energy transfers. Physics of Fluids, 36(9), 095102. https://doi.org/10.1063/5.0219635
  8. Qian, X., Zhang, X.*, Weerasuriya, A. U., & Zhai, J. (2024). Designing green walls to mitigate fine particulate pollution in an idealized urban environment. Sustainable Cities and Society, 105640. https://doi.org/10.1016/j.scs.2024.105640
  9. Chen, Z., Guan, T., Zhang, L., Li, S., Kim, B., Fu, Y., Li, C. Y., & Zhang, X. (2024). The flow interference investigation of multi-square prisms under fluid–structure interaction. I. Proximal wake characteristics of tandem square prisms. Physics of Fluids, 36(7), 075137. https://doi.org/10.1063/5.0201581
  10. Zhang, X., A. U. Weerasuriya, U. S. Perera, J. Wang, C. Y. Li, K. T. Tse, K. C. S. Kwok; Effects of internal wall design on cross-ventilation of an isolated building. Physics of Fluids 1 May 2024; 36 (5): 057130. https://doi.org/10.1063/5.0202386.
  11. Fan, X., Zhang, X.*, Weerasuriya, A. U., Hang, J., Zhai, J., Luo, Q., & Ou. C. (2024), Simulation-based Suggestions for Lockdown Rules in Dense Urban Areas considering Indoor-Outdoor Droplet Transmission under Natural Ventilation Conditions, Sustainable Cities and Society, 108, 105401. https://doi.org/10.1016/j.scs.2024.105401
  12. Zhao, Y.#, Zhang, X.#, Ling, H., Jia, S., Yang, X., Zhang, Y., Zhao, B., & Hua, J. (2024). Utilizing periodic boundary conditions to save computational resources for assessing building natural ventilation in urban areas, Urban Climate55, 101925. https://doi.org/10.1016/j.uclim.2024.101925
  13. Luo, Q., Hang, J., Ou, C., Luo, Z., Yang, X., Zhang, Y., Gu, Z., & Zhang, X.* (2024). Assessing impact of intermittent window opening strategies on pathogen-laden droplet dispersion in a coach bus, Building Simulation,  17(7), 1183–1200. https://doi.org/10.1007/s12273-024-1134-5
  14. Li, Q.#, Zhang, X.#, Hang, J. (2024). Numerical investigations of cool coatings on building envelopes for urban heat mitigation with various street aspect ratios, Sustainable Cities and Society, doi: https://doi.org/10.1016/j.scs.2024.10541
  15. Zeng, L., Zhang, X., Lu, J., Li, Y., Hang, J., Hua, J., … & Ling, H. (2024). Influence of Various Urban Morphological Parameters on Urban Canopy Ventilation: A Parametric Numerical Study. Atmosphere15(3), 352. https://doi.org/10.3390/atmos15030352
  16. Ye, X., Zhang, X.*, Weerasuriya, A.U., Hang, J., Zeng, L., Li C.Y. (2023). Optimum design parameters for a venturi-shaped roof to maximize the performance of building-integrated wind turbines. Applied Energy, 122311. https://doi.org/10.1016/j.apenergy.2023.122311
  17. Li, C. Y., Chen, Z., Weerasuriya, A. U., Zhang, X., Lin, X., Zhou, L., Fu, Y., & Tse, T. K. T. (2023). Best practice guidelines for the dynamic mode decomposition from a wind engineering perspective. Journal of Wind Engineering and Industrial Aerodynamics, 241, 105506. https://doi.org/10.1016/j.jweia.2023.105506
  18. Luo, Q., Liu, W., Liao, J., Gu, Z., Fan, X., Luo, Z., Zhang, X., Hang, J. & Ou, C. (2023). COVID-19 transmission and control in land public transport: A literature review. Fundamental Research,  4(3), 417–429. https://doi.org/10.1016/j.fmre.2023.10.013
  19. Zeng, L., Lindberg, F., Zhang, X., Pan, H., & Lu, J. (2023). Road surface temperature evaluated with streetview-derived parameters in a hot and humid megacity. Urban Climate51, 101585. https://doi.org/10.1016/j.uclim.2023.101585
  20. Hang, J., Wang, X., Liang, J., Zhang, X., Wu, L., Du, Y., … & Buccolieri, R. (2023). Numerical investigation of the impact of urban trees on O3–NOx–VOCs chemistry and pollutant dispersion in a typical street canyon. Atmospheric Environment, 119998. DOI: 10.1016/j.atmosenv.2023.119998
  21. Zhang, X., Buddhika, J. W. G., Wang, J., Weerasuriya, A. U., & Tse, K. T. (2023). Numerical investigation of effects of trees on cross-ventilation of an isolated building. Journal of Building Engineering, 106808. https://doi.org/10.1016/j.jobe.2023.106808
  22. Li, C. Y., Chen, Z., Tim, K. T., Weerasuriya, A. U., Zhang, X., Fu, Y., & Lin, X. (2023). The linear-time-invariance notion of the Koopman analysis. Part 2. Dynamic Koopman modes, physics interpretations and phenomenological analysis of the prism wake. Journal of Fluid Mechanics959, A15. DOI: https://doi.org/10.1017/jfm.2023.36
  23. Liang, J., Zeng, L., Zhou, S., Wang, X., Hua, J., Zhang, X., … & He, L. (2023). Combined Effects of Photochemical Processes, Pollutant Sources and Urban Configuration on Photochemical Pollutant Concentrations. Sustainability15(4), 3281. DOI: 10.3390/su15043281
  24. Hang, J., Yang, X., Ou, C., Luo, Z., Fan, X., Zhang, X., … & Li, X. (2023). Assessment of exhaled pathogenic droplet dispersion and indoor-outdoor exposure risk in urban street with naturally-ventilated buildings. Building and Environment, 110122. DOI:10.1016/j.buildenv.2023.110122
  25. Li, C. Y., Chen, Z., Zhang, X., Tim, K. T., & Lin, C. (2023). Koopman analysis by the dynamic mode decomposition in wind engineering. Journal of Wind Engineering and Industrial Aerodynamics232, 105295. https://doi.org/10.1016/j.jweia.2022.105295
  26. Hang, J., Liang, J., Wang, X., Zhang, X.*, Wu, L.,& Shao, M. (2022). Investigation of O3–NOx–VOCs chemistry and pollutant dispersion in street canyons with various aspect ratios by CFD simulations. Building and Environment226, 109667. https://doi.org/10.1016/j.buildenv.2022.109667
  27. Chen, Z., Zhang, L., Li, K., Xue, X., Zhang, X., Kim, B., & Li, C. Y. (2022). Machine-learning prediction of aerodynamic damping for buildings and structures undergoing flow-induced vibrations. Journal of Building Engineering, 105374. https://doi.org/10.1016/j.jobe.2022.105374
  28. Hang, J., Wang, D., Zeng, L., Ren, L., Shi, Y., & Zhang, X. (2022). Experimental investigation of thermal environment and surface energy balance in deep and shallow street canyons under various sky conditions. Building and Environment, 109618. DOI:10.1016/j.buildenv.2022.109618
  29. Fan, X.,Zhang, X.*, Werasuriya, A. U., Hang, J., Zeng, L., Luo, Q., … & Chen, Z. (2022). Numerical investigation of the effects of environmental conditions, droplet size, and social distancing on droplet transmission in a street canyon. Building and Environment, 109261. DOI:10.1016/j.buildenv.2022.109261
  30. Luo, Q., Ou, C., Hang, J., Luo, Z., Yang, H., Yang, X., Zhang, X. & Li, Y. (2022). Role of pathogen-laden expiratory droplet dispersion and natural ventilation explaining a COVID-19 outbreak in a coach bus. Building and Environment220, 109160. https://doi.org/10.1016/j.buildenv.2022.109160
  31. Zhang, X., Weerasuriya, A. U., Wang, J., Li, C. Y., Chen, Z., Tse, K. T., & Hang, J. (2022). Cross-ventilation of a generic building with various configurations of external and internal openings. Building and Environment207, 108447. https://doi.org/10.1016/j.buildenv.2021.108447
  32. Li, C. Y., Chen, Z., Lin, X., Weerasuriya, A. U., Zhang, X., Fu, Y., & Tse, T. K. (2022). The linear-time-invariance notion to the Koopman analysis: The architecture, pedagogical rendering, and fluid–structure association. Physics of Fluids34(12), 125136. https://doi.org/10.48550/arXiv.2112.02985
  33. Li, C. Y., Chen, Z., Tse, T. K., Weerasuriya, A. U., Zhang, X., Fu, Y., & Lin, X. (2022). A parametric and feasibility study for data sampling of the dynamic mode decomposition: Spectral insights and further explorations. Physics of Fluids34(3), 035102. https:/doi.org/10.1007/s11071-021-07167-8
  34. Li, C. Y., Chen, Z., Tse, T. K., Weerasuriya, A. U., Zhang, X., Fu, Y., & Lin, X. (2022). A parametric and feasibility study for data sampling of the dynamic mode decomposition: range, resolution, and universal convergence states. Nonlinear Dynamics, 1-25. https:/doi.org/10.1007/s11071-021-07167-8
  35. Li, C. Y., Chen, Z., Tse, T. K., Weerasuriya, A. U., Zhang, X., Fu, Y., & Lin, X. (2021). Establishing direct phenomenological connections between fluid and structure by the Koopman-Linearly Time-Invariant analysis. Physics of Fluids33(12), 121707. https://doi.org/10.1063/5.0075664
  36. Hu, Y., Wu, Y., Wang, Q., Hang, J., Li, Q., Liang, J., … & Zhang, X. (2021). Impact of Indoor-Outdoor Temperature Difference on Building Ventilation and Pollutant Dispersion within Urban Communities. Atmosphere13(1), 28. DOI: 10.3390/atmos13010028
  37. Weerasuriya, A. U., Zhang, X.*, Tse, K. T., Liu, C. H., & Kwok, K. C. (2021). RANS simulation of near-field dispersion of reactive air pollutants. Building and Environment, 108553. DOI:10.1016/j.buildenv.2021.108553
  38. Weerasuriya, A. U., Zhang, X.*, Wang, J., Lu, B., Tse, K. T., & Liu, C. H. (2021). Performance evaluation of population-based metaheuristic algorithms and decision-making for multi-objective optimization of building design. Building and Environment198, 107855. https://doi.org/10.1016/j.buildenv.2021.107855
  39. Weerasuriya, A. U., Zhang, X.*, Lu, B., Tse, K. T., & Liu, C. H. (2021). A Gaussian Process-Based emulator for modeling pedestrian-level wind field. Building and Environment, 107500. https://doi.org/10.1016/j.buildenv.2020.107500
  40. Zhang, X., Weerasuriya, A. U., & Tse, K. T. (2020). CFD simulation of natural ventilation of a generic building in various incident wind directions: Comparison of turbulence modelling, evaluation methods, and ventilation mechanisms. Energy and Buildings229, 110516. DOI:10.1016/j.enbuild.2020.110516
  41. Zhang X., Weerasuriya A. U.*, Zhang X., Tse K.T., Lu B., Li Cruz Y. & Liu C.H. (2020). Pedestrian Wind Comfort Near a Super-Tall Building with Various Configurations in an Urban-like Setting. Building Simulation. DOI: 10.1007/s12273-020-0658-6
  42. Zhang, Y., Liu, J., Zheng, Z., Fang, Z., Zhang, X., Gao, Y., & Xie, Y. (2020). Analysis of thermal comfort during movement in a semi-open transition space. Energy and Buildings225, 110312. https://doi.org/10.1016/j.enbuild.2020.110312
  43. Weerasuriya A. U., Zhang X.*, Lu B., Tse K.T. & Liu C.H. (2020). Optimizing Lift-up Design to Maximize Pedestrian Wind and Thermal Comfort in ‘Hot-Calm’ and ‘Cold-Windy’ Climates. Sustainable Cities and Society, 58, 102146DOI: 10.1016/j.scs.2020.102146     
  44. Zhou, C., Fang, Z., Xu, X., Zhang, X., Ding, Y. & Jiang, X. (2019). Using Long Short-Term Memory Networks to Predict Energy Consumption of Air-conditioning Systems. Sustainable Cities and Society55, 102000. https://doi.org/10.1016/j.scs.2019.102000
  45. Hang J., Chen X., Chen G., Chen T., Lin Y., Luo Z., Zhang X.* & Wang Q.* (2019). Impacts of aspect ratios and wall heating conditions on flow and passive pollutant exposure in 2D typical street canyons, Building and Environment, 168, 106536. DOI:10.1016/j.buildenv.2019.106536
  46. Zhang, X., Weerasuriya, A. U., Lu, B., Tse, K.T., Liu, C.H. & Tamura, Y. (2019). Pedestrian-level Wind Environment near a Super-Tall Building with Unconventional Configurations in a Regular Urban Area, Building Simulation, 13, 439-456. https://doi.org/10.1007/s12273-019-0588-3
  47. Weerasuriya, A. U., Zhang, X.*, Gan, V. J. L.*, & Tan, Y. (2019). A holistic framework to utilize natural ventilation to optimize energy performance of residential high-rise buildings, Building and Environment, 153, 218-232. https://doi.org/10.1016/j.buildenv.2019.02.027               
  48. Liu, J., Zhang, X., Niu, J., & Tse, K. T. (2019). Pedestrian-level wind and gust around buildings with a ‘lift-up’ design: Assessment of influence from surrounding buildings by adopting LES. Building Simulation, 12(6), 1107-1118. https://doi.org/10.1007/s12273-019-0541-5
  49. ZhangX., Tse, K. T., Weerasuriya, A. U., Kwok, K. C. S. Niu, J., Lin, Z., & Mak, C. M. (2018). Pedestrian-level wind conditions in the space underneath lift-up buildings, Journal of Wind Engineering and Industrial Aerodynamics, 179, 58-69. 
  50. Weerasuriya, A. U., Tse, K. T., Zhang, X.*, & Kwok, K. C. S. (2018).  Equivalent Wind Incidence Angle Method: A New Technique to Integrate the Effects of Twisted Wind Flows to AVA, Building and Environment, 139, 46-57. https://doi.org/10.1016/j.buildenv.2018.05.017
  51. Weerasuriya, A. U., Tse, K. T., Zhang, X.*, & Kwok, K. C. S. (2018). Integrating Twisted Wind Profiles to Air Ventilation Assessment (AVA): The Current Status, Building and Environment, 135, 297-307. https://doi.org/10.1016/j.buildenv.2018.03.024
  52. Weerasuriya, A. U., Hu, Z. Z., ZhangX., Tse, K. T., Li, S. W., & Chan, P. W. (2018). New inflow boundary conditions for modelling twisted wind profiles in CFD simulation of the pedestrian-level wind field near isolated buildings, Building and Environment132, 303-318. https://doi.org/10.1016/j.buildenv.2018.01.047
  53. Weerasuriya, A. U., Tse, K. T., Zhang, X.*, & Li, S. W. (2018). A wind tunnel study of effects of twisted wind flows on the pedestrian-level wind field in an urban environment, Building and Environment128, 225-235. https://doi.org/10.1016/j.buildenv.2017.11.041
  54. ZhangX., Tse, K. T., Weerasuriya, A. U., Li, S. W., Kwok, K. C. S., Mak, C. M., Niu, J., & Lin, Z. (2017). Evaluation of pedestrian wind comfort near ‘lift-up’ buildings with different aspect ratios and central core modifications. Building and Environment, 124, 245-257. https://doi.org/10.1016/j.buildenv.2017.08.012
  55. Tse, K. T., ZhangX.*, Weerasuriya, A. U., Li, S. W., Kwok, K. C. S., Mak, C. M., & Niu, J. (2017). Adopting “lift-up” building design to improve the surrounding pedestrian-level wind environment. Building and Environment117, 154–165.  https://doi.org/10.1016/j.buildenv.2017.03.011 
  56. Tse, K. T., Weerasuriya, A. U., ZhangX., Li, S. W., & Kwok, K. C. S. (2017). Effects of twisted wind flows on wind conditions in passages between buildings. Journal of Wind Engineering and Industrial Aerodynamics167, 87-100. https://doi.org/10.1016/j.jweia.2017.04.011
  57. Tse, K. T., Weerasuriya, A. U., Zhang, X., Li, S. W., & Kwok, K. C. S. (2017). Pedestrian-level wind environment around isolated buildings under the influence of twisted wind flows. Journal of Wind Engineering and Industrial Aerodynamics162, 12–23. https://doi.org/10.1016/j.jweia.2017.01.002

Projects and Fundings

  1. 2025-2028, National Natural Science Foundation of China: the influence of the collaborative application of photocatalysis and cold coating to the building surfaces on the subtropical urban microenvironment and building energy consumption (Pl)
  2. 2022-2025, Overseas High-Level Talent Recruitment Programs: Urban Wind Environment (Pl)
  3. 2022-2025, National Natural Science Foundation of China: indoor-outdoor coupling effects of droplet dispersion andinterpersonal exposure under typical meteorological conditions within urban communities (Pl)
  4. 2022-2024, University basic scientific research : indoor-outdoor coupling effects of droplet dispersion and riskidentification within typical public buildings (Pl)
  5. 2022-2023, Young Researcher Fund of Sun Yat-sen University. indoor-outdoor coupling effects of droplet dispersion and riskidentification within typical public buildings (Pl)
  6. 2021-2023, Guangzhou Municipal Science and Technology Project. Mechanism study of natural ventilation in typical semiopen public buildings (Pl)
  7. 2020-2023, Science and Technology Planning Project of Guangdong Province: Typical lif-up design optimization based onsurrogate model and optimization algorithm(Pl)
  8. 2022-2025, Participated in key laboratory projects of Guangdong Province
  9. 2021-2024, Participate in research plans in key areas of Guangdong Province
  10. 2024, Meteorological disaster prevention and environmental meteorological center construction project of Hebei Province (Pl)
  11. 2024, Participated in the project of State Power Investment Corporation Guangxi nuclear power company

Conference